Visceral Leishmaniasis on the Indian Subcontinent: Modelling the Dynamic Relationship between Vector Control Schemes and Vector Life Cycles

Citation: Poché DM, Grant WE, Wang H-H (2016) Visceral Leishmaniasis on the Indian Subcontinent: Modelling the Dynamic Relationship between Vector Control Schemes and Vector Life Cycles. PLoS Negl Trop Dis 10(8): e0004868. doi:10.1371/journal.pntd.0004868
Published: August 18, 2016

Abstract
Leishmania_donovaniBackground: Visceral leishmaniasis (VL) is a disease caused by two known vector-borne parasite species (Leishmania donovani, L. infantum), transmitted to man by phlebotomine sand flies (species: Phlebotomus and Lutzomyia), resulting in ≈50,000 human fatalities annually, ≈67% occurring on the Indian subcontinent. Indoor residual spraying is the current method of sand fly control in India, but alternative means of vector control, such as the treatment of livestock with systemic insecticide-based drugs, are being evaluated. We describe an individual-based, stochastic, life-stage-structured model that represents a sand fly vector population within a village in India and simulates the effects of vector control via fipronil-based drugs orally administered to cattle, which target both blood-feeding adults and larvae that feed on host feces.
Principle findings: Simulation results indicated efficacy of fipronil-based control schemes in reducing sand fly abundance depended on timing of drug applications relative to seasonality of the sand fly life cycle. Taking into account cost-effectiveness and logistical feasibility, two of the most efficacious treatment schemes reduced population peaks occurring from April through August by ≈90% (applications 3 times per year at 2-month intervals initiated in March) and >95% (applications 6 times per year at 2-month intervals initiated in January) relative to no control, with the cumulative number of sand fly days occurring April-August reduced by ≈83% and ≈97%, respectively, and more specifically during the summer months of peak human exposure (June-August) by ≈85% and ≈97%, respectively.
Conclusions: Our model should prove useful in a priori evaluation of the efficacy of fipronil-based drugs in controlling leishmaniasis on the Indian subcontinent and beyond.

Author Summary: Visceral leishmaniasis is a disease caused by a virulent vector-borne parasite transmitted to man by phlebotomine sand flies. Fipronil-based drugs, administered to cattle orally, provide a potential means of sand fly control by permeating in cattle blood and being excreted in cattle feces, targeting adult females feeding on cattle blood and larvae feeding on cattle feces, respectively. An agent-based, stochastic simulation model was developed to represent sand fly population dynamics in a village in Bihar, India, at all developmental stages, with the goal of predicting the impact of various vector control strategies, utilizing drug treated cattle, on vector population numbers. Results indicate that success of treatment is dependent on the number of treatments applied annually and the seasonality of the sand fly lifecycle. Results further suggest that treatment schemes are most effective in reducing vector populations when high drug efficacy is maintained in cattle feces during periods of high larval density. Our approach incorporates detailed representation of the vector population and provides an explicit representation of the effects of insecticide application on adult and larval sand flies. Hence, this model predicts treatment schemes that may have the greatest potential to reduce sand fly numbers.

...

Log in or register for free to continue reading
Register Now For Free Already Registered? Log In
This entry was posted in Infectious Disease and tagged , , , .

Post a Comment

You must be logged in to post a comment.